1
DeCastro J. Pediatric Home Milrinone Use While Awaiting Heart Transplant. Pediatr Nurs [Internet]. 2020 May;46(3):115–8. Available from: https://search.ebscohost.com/login.aspx?direct=true&db=eue&AN=143616619&site=ehost-live
2
MedlinePlus. Congenital Heart Defects [Internet]. 2020 [cited 2020 Nov 19]. Available from: https://medlineplus.gov/congenitalheartdefects.html
3
Centers for Disease Control and Prevention. Heart Disease Facts [Internet]. 2020 [cited 2021 Apr 12]. Available from: https://www.cdc.gov/heartdisease/facts.htm
4
M. Buga L, Dawson S, Harwell A, Hopkins R, Kaufmann J. Anatomy & Physiology [Internet]. 2020 [cited 2020 Nov 19]. 1933 p. Available from: https://open.oregonstate.education/aandp/chapter/19-3-cardiac-cycle/
5
Carriker C, Kravitz L. Exploring the Amazing Heart. IDEA Fit J [Internet]. 2013 Feb;10(2):36–43. Available from: https://search.ebscohost.com/login.aspx?direct=true&db=s3h&AN=85973651&site=ehost-live
6
Institute for Quality and Efficiency in Health Care (IQWiG). Types of heart failure [Internet]. 2018 [cited 2021 Apr 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK481485/
7
Chatterjee K, Massie B. Systolic and Diastolic Heart Failure: Differences and Similarities. J Card Fail [Internet]. 2007;13(7):569–76. Available from: https://www.sciencedirect.com/science/article/pii/S1071916407001340
8
Monica A, Biykem B, Gurusher P, Brooke A, J. OR, D. BN, et al. Lifestyle Modifications for Preventing and Treating Heart Failure. J Am Coll Cardiol [Internet]. 2018 Nov 6;72(19):2391–405. Available from: https://doi.org/10.1016/j.jacc.2018.08.2160
9
National Heart Centre Singapore. Left Ventricular Assist Device (LVAD)- A Guide for Healthcare Workers [Internet]. SingHealth. 2018 [cited 2021 Apr 20]. Available from: https://www.nhcs.com.sg/news/medical-news-singhealth/left-ventricular-assist-device-lvad
10
Mayo Clinic. Ventricular assist device (VAD).
11
Estep JD, Loebe M. Overview of the current benefits and risks of continuous-flow left ventricular assist devices. Methodist Debakey Cardiovasc J [Internet]. 2015;11(1):2–3. Available from: https://pubmed.ncbi.nlm.nih.gov/25793021
12
Jayaprasad N. Heart Failure in Children. Heart Views [Internet]. 2016;17(3):92–9. Available from: https://pubmed.ncbi.nlm.nih.gov/27867456
13
Colvin M, Smith JM, Hadley N, Skeans MA, Uccellini K, Goff R, et al. OPTN/SRTR 2018 Annual Data Report: Heart. Am J Transplant [Internet]. 2020 Jan 1;20(s1):340–426. Available from: https://doi.org/10.1111/ajt.15676
14
Vaidya Y, Riaz S, S. Dhamoon A. Left Ventricular Assist Devices [Internet]. 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499841/
15
Burki S, Adachi I. Pediatric ventricular assist devices: current challenges and future prospects. Vasc Health Risk Manag [Internet]. 2017 May 15;13:177–85. Available from: https://pubmed.ncbi.nlm.nih.gov/28546755
16
Hetzer R, Alexi-Meskishvili V, Weng Y, Hübler M, Potapov E, Drews T, et al. Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years’ experience. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006;99–108.
17
Conway MD J, St. Louis MD J, Morales MD DLS, Law MD S, Tjossem BS C, Humpl MD T. Delineating Survival Outcomes in Children <10 kg Bridged to Transplant or Recovery With the Berlin Heart EXCOR Ventricular Assist Device. JACC Heart Fail. 2015;3(1):70–7.
18
SU B, CHUA LPOH, ZHONG L. NUMERICAL STUDIES OF AN AXIAL FLOW BLOOD PUMP WITH DIFFERENT DIFFUSER DESIGNS. J Mech Med Biol [Internet]. 2012 Dec 28;13(03):1350029. Available from: https://doi.org/10.1142/S0219519413500292
19
Wang S, Tan J, Yu Z. Study on the influence of dynamic/static interface processing methods on CFD simulation results of the axial-flow blood pump. Adv Mech Eng. 2020;12(3):1–12.
20
Hosseinipour M, Gupta R, Bonnell M, Elahinia M. Rotary mechanical circulatory support systems. J Rehabil Assist Technol Eng [Internet]. 2017 Sep 1;4:2055668317725994–2055668317725994. Available from: https://pubmed.ncbi.nlm.nih.gov/31186935
21
Hydraulic Institute. What is the Difference Between Centrifugal & Rotodynamic Pumps [Internet]. 2019 [cited 2021 Apr 20]. Available from: https://www.pumpsandsystems.com/what-difference-between-centrifugal-rotodynamic-pumps
22
Brennen CE. 2.1 Geometric Notation. Hydrodynamics of Pumps. Cambridge University Press; 2011.
23
Smith PA, Wang Y, Bieritz SA, Conger J, Sampaio L, Cohn W, et al. In Vivo Feasibility Study of an Intra-Atrial Blood Pump for Partial Support of the Left Ventricle*. 2018 40th Annu Int Conf IEEE Eng Med Biol Soc. 2018;4520–3.
24
Frazier OH. Development of a Fully-Implantable Ventricular Assist Device for Neonates and Children with Heart Failure - with Magnetic Levitation to Improve Hemocompatibility (Funded NIH:R01 grant application). 2019. p. 100–11.
25
Mehta A. Project plan and literature review. 2020.
26
Valenti M. CFD software improves pump design. Mech Eng [Internet]. 1996 Nov;118(11):82. Available from: https://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=9612042172&site=ehost-live
27
James ME, Papavassiliou D V., O’Rear EA. Use of computational fluid dynamics to analyze blood flow, hemolysis and sublethal damage to red blood cells in a bileaflet artificial heart valve. Fluids. 2019;4(1).
28
Kannojiya V, Das AK, Das PK. Proposal of hemodynamically improved design of an axial flow blood pump for LVAD. Med Biol Eng Comput [Internet]. 2020;58(2):401–18. Available from: https://doi.org/10.1007/s11517-019-02097-5
29
Chen Z, Jena SK, Giridharan GA, Sobieski MA, Koenig SC, Slaughter MS, et al. Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Med Biol Eng Comput [Internet]. 2019;57(4):807–18. Available from: https://doi.org/10.1007/s11517-018-1922-0
30
Zhang J, Zhang P, Fraser KH, Griffith BP, Wu ZJ. Comparison and Experimental Validation of Fluid Dynamic Numerical Models for a Clinical Ventricular Assist Device. Artif Organs. 2013;37(4):380–9.
31
Chalghoum I, Kanfoudi H, Elaoud S, Akrout M, Zgolli R. Numerical Modeling of the Flow Inside a Centrifugal Pump: Influence of Impeller–Volute Interaction on Velocity and Pressure Fields. Arab J Sci Eng. 2016;41(11):4463–76.
32
Tonello N, Eude Y, de Laage de Meux B, Ferrand M. Frozen Rotor and Sliding Mesh Models Applied to the 3D Simulation of the Francis-99 Tokke Turbine with Code_Saturne. Vol. 782. 2017. p. 12009.
33
Lacey D, Steele C. The use of dimensional analysis to augment design of experiments for optimization and robustification. J Eng Des [Internet]. 2006 Jan 1;17(1):55–73. Available from: https://doi.org/10.1080/09544820500275594
34
Cognitive Veritas. Design of Experiments for Neural Networks [Internet]. 2019 [cited 2020 Nov 19]. Available from: https://cognitivetruth.wordpress.com/2019/02/22/design-of-experiments-for-neural-networks/
35
Seok W, Kim GH, Seo J, Rhee SH. Application of the design of experiments and computational fluid dynamics to bow design improvement. J Mar Sci Eng. 2019;7(7).
36
Pilz J, Rasch D, Melas VB, Moder K. Statistics and Simulation : IWS 8, Vienna, Austria, September 2015. 1st ed. 20. Cham: Cham : Springer International Publishing : Imprint: Springer; 2018.
37
He C. A fast learning algorithm based on extreme learning machine for regular fuzzy neural network. J Intell Fuzzy Syst. 2019;36(4):3263–70.
38
Elfarra MA. Optimization of helicopter rotor blade performance by spline-based taper distribution using neural networks based on CFD solutions. Eng Appl Comput Fluid Mech [Internet]. 2019 Jan 1;13(1):833–48. Available from: https://doi.org/10.1080/19942060.2019.1648322
39
Sun X, Liu J, Zhu K, Hu J, Jiang X, Liu Y. Generalized regression neural network association with terahertz spectroscopy for quantitative analysis of benzoic acid additive in wheat flour. R Soc Open Sci. 2019;6(7).
40
Ustaoglu B, Cigizoglu H, Karaca M. Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods. Meteorol Appl. 2008 Dec 1;15:431–45.
41
Al-Daoud E. A comparison between three neural network models for classification problems. Vol. 2, Journal of Artificial Intelligence. 2009. p. 56–64.
42
Gen M. Network Models and Optimization : Multiobjective Genetic Algorithm Approach. 1st ed. 20. Cheng R, Lin L, editors. London: London : Springer London : Imprint: Springer; 2008.
43
MathWorks. How the Genetic Algorithm Works [Internet]. Help Center. 2021 [cited 2021 Apr 20]. Available from: https://uk.mathworks.com/help/gads/how-the-genetic-algorithm-works.html
44
García‐Hernández L, Arauzo‐Azofra A, Salas‐Morera L, Pierreval H, Corchado E. Facility layout design using a multi-objective interactive genetic algorithm to support the DM. Expert Syst [Internet]. 2015 Feb;32(1):94–107. Available from: http://10.0.4.87/exsy.12064
45
Adham AM, Mohd-Ghazali N, Ahmad R. Optimization of an ammonia-cooled rectangular microchannel heat sink using multi-objective non-dominated sorting genetic algorithm (NSGA2). Heat mass Transf. 2012;48(10):1723–33.
46
Garcia S, Trinh CT. Comparison of multi-objective evolutionary algorithms to solve the modular cell design problem for novel biocatalysis. Processes. 2019;7(6).
47
Yılmaz ÖF, Durmuşoğlu MB. Evolutionary Algorithms for Multi-Objective Scheduling in a Hybrid Manufacturing System. IGI Global; 2018. p. 162–87.
48
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.
49
Abubaker H, Sivaram A, Münsch M, Murcek R, Boye A, Delgado A. Optimization of Design Parameters of CIP Spray Cleaning Nozzle Using Genetic Algorithm BT - Recent Advances in Computational Engineering. In: Schäfer M, Behr M, Mehl M, Wohlmuth B, editors. Cham: Springer International Publishing; 2018. p. 1–14.
50
Red Cedar Technology. Optimization of an ANSYS CFD Model Using HEEDS MDO. :1–3.
51
Smith PA, Wang Y, Metcalfe RW, Sampaio LC, Timms DL, Cohn WE, et al. Preliminary design of the internal geometry in a minimally invasive left ventricular assist device under pulsatile-flow conditions. Int J Artif Organs [Internet]. 2018 Feb 11;41(3):144–51. Available from: https://doi.org/10.1177/0391398817752291
52
Hariharan P, D’Souza GA, Horner M, Morrison TM, Malinauskas RA, Myers MR. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations. PLoS One [Internet]. 2017 Jun 8;12(6):e0178749. Available from: https://doi.org/10.1371/journal.pone.0178749
53
Taskin ME, Fraser KH, Zhang T, Wu C, Griffith BP, Wu ZJ. Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation. ASAIO J [Internet]. 2012;58(4). Available from: https://journals.lww.com/asaiojournal/Fulltext/2012/07000/Evaluation_of_Eulerian_and_Lagrangian_Models_for.11.aspx
54
Ansys. ANSYS Bladegen User’s Guide, 2020R2, Section 9.1.11. Definitions. 2020.
55
MathWorks. Design Generalized Regression Neural Network [Internet]. 2021 [cited 2021 Apr 21]. Available from: https://uk.mathworks.com/help/deeplearning/ref/newgrnn.html
56
Rodríguez JD. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Trans Pattern Anal Mach Intell. 2010;32(3):569–76.
57
Raschka S. Model evaluation, model selection, and algorithm selection in machine learning [Internet]. 2016 [cited 2021 Apr 21]. Available from: https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html
58
MathWorks. Genetic Algorithm Options [Internet]. Help Center. 2021 [cited 2021 Apr 21]. Available from: https://uk.mathworks.com/help/gads/genetic-algorithm-options.html
59
Herbertson LH, Olia SE, Daly A, Noatch CP, Smith WA, Kameneva M V., et al. Multilaboratory study of flow-induced hemolysis using the FDA benchmark nozzle model. Artif Organs. 2015;39(3):237–48.
60
Baieth HEA. Physical parameters of blood as a non - newtonian fluid. Int J Biomed Sci [Internet]. 2008 Dec;4(4):323–9. Available from: https://pubmed.ncbi.nlm.nih.gov/23675105
Master’s Dissertation | Summary | Aims and Objectives | Background | Literature Review | Methods | Results and Discussion | Conclusions | References